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Abstract. The paper considers circular null geodesics and turning points for equitorial 
orbits in the Hogan metric for rotating matter. 

1. Introduction 

In recent years, there has been some interest in the study of null geodesics within matter 
distributions. The motivation is to investigate the possibility of trapping neutrinos 
within stellar objects and this might conceivably be of some significance in the 
interpretation of the results of the experiments by Davies et a1 (Kuchowicz, 1976). 

Following the discovery of trapped null orbits in the Schwarzschild interior metric 
and some non-static matter distributions (de Felice, 1969; Kuchowicz, 1974), Collas 
and Lawrence (1976) (herein after referred to as CL) have considered the trapped null 
geodesics in an interior metric for rotating matter given by Gurses and Gursey (1975). 
Their principal conclusion was that the presence of rotation in the background matter 
increases or decreases the trapping, according as the neutrino angular momentum is in 
the opposite or same sense as that of the background matter. This conclusion seems 
interesting as it would enable, in principle, a study of the rotation inside a source from 
observations on the neutrinos escaping from it. 

However, the solution of Gurses and Gursey possesses some unphysical features, as 
pointed out by CL, who showed that at least one of the principal stresses is negative if 
the energy density is positive and the Hawking-Penrose condition is violated. Further, 
with CL’s choice of a function f ( r ) ,  left arbitrary by Gurses and Gursey, the field had a 
singularity at the origin r = 0, with the matter density becoming arbitrarily large there. 

To the present author, it seemed worthwhile to investigate this important question 
of trapping for more acceptable rotating matter metrics. One such metric has very 
recently been proposed by Hogan (1976). This metric has several desirable features- 
the energy stress-tensor is consistent with the Hawking-Penrose condition, and in the 
non-rotating limit, the metric passes over to the Schwarzschild interior solution, while 
the Gurses and Gursey solution has no acceptable non-rotating limit, 

However, the Hogan metric embedded in the exterior Kerr metric requires a surface 
mass distribution at the boundary which is an obvious shortcoming of the solution. 

Hogan’s line element is 

d s 2 = ( ~ , / x ) d r 2 + ~ d d e 2 + ( r 2 + a 2 ) s i n 2  8 d42-dt2+(1- f ) (d t+a  sin2 8 d4)’ 
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where 

2 = r 2 + a 2 c o s 2 8 ,  x = r 2 - q R 2 X + a 2 ,  

f= [5./(1 --qb2)-$./(1 -qR2)I2, R = r-’2, 4 = 2mb-3, 
(2 ) 

b is a constant and b > 2m. The metric matches continuously to the Kerr metric 

d s2=(2 /A)dr2+2  de2+(r2+a2)s in2  8 d42-dt2+(2mr/2)(dt+a sin2 8 d4)’ (3) 

with A=r2-2mr+a2 .  
On the closed two-surface 

it being assumed that 

($b)2 > m 2  2 a’. (4‘) 

The equitorial boundary is thus a circle of radius r = b. 
The line element ( 1 )  reduces to the interior Schwarzschild metric for a homogeneous 

sphere of radius r = 6,  when a = 0. It may be noted that for a # 0, if one approaches the 
origin r = 0, from a direction 8 f 7r/2, the metric ( 1 )  ceases to be real and also has an 
apparent singularity; however, with 8 = ~ / 2 ,  at the limit r + 0, the metric remains 
regular and real. 

2. Circular orbits in the equitorial plane 

CL have found that for the Gurses and Gursey metric, the Hamilton-Jacobi equation 
admits an integration by the method of separation of variables as has been shown 
previously by Carter (1968) for the Kerr metric. For the Hogan metric, however, the 
variables 8 and r cannot be separated (cf the case of Tomimatsu-Sato metric (1973)) 
and hence unlike the CL case, the radial equation cannot in general be reduced to 
quadrature. In the present discussion, we have limited our consideration to geodesics in 
the equitorial plane (e = 7r/2). We shall first consider circular orbits which allow a 
simple analytical discussion. 

For a circular orbit in the equitorial plane, we have 8 = 7r/2, 8 = 0, r = constant, 
r = 0, and hence the geodesic equation gives 

(5 1 - l x  -[2r- a’f142- a - f d i  X -- l x  - f i 2  = 0 
2 2  z 2 2  

where the dot denotes differentiation with respect to an affine parameter and the prime 
denotes differentiation with respect to r. We have from equation (5 ) ,  

Again for a null geodesic, ds = 0, so that 
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Eliminating 4 with the help of equation (6 ) ,  equation (7) may be put in the form 

Writing 

2mr2/b3 = cos’ J/ 

we get 
1/2 

(A - 4 sin +)”’(; - A sin 4 )  = - 2 4  5) (sin + ) ” 2 r  ] 12f - 1 

where 

A = $ l -  (2m/b>]’ / ’  =$sin $b 

so that 

f=(A-$s in  $)’. 

( 9 )  

The upper and lower quantities in the boxes in equation (8) and (10) correspond 
respectively to the upper and lower signs in equation (6). We may note also that 4 
decreases from 7r/2 at r = 0 to +b = c0s - ’ (2m/b) ’ /~  at the boundary. 

The following tables, obtained by direct computation from equation (10 )  show the 
values of m j b  and a lb .  It may be noted that the value m / b  = 419 5 0 . 4 4 4  corresponds 
to f = 0 at r = 0 and thus the limiting concentration for regular solutions. 

For such a case (very ‘dense’ source, m / b  ~ 0 . 4 4 2 )  the circular orbit in the 
non-rotating case (a = 0, i.e. Schwarzschild interior metric) lies well within the source 
(r lb  = 0*20,-not given in the table) while with the decreasing values of m l b  (‘diffuse’ 
sources), the circular orbits shift outwards and in the case m / b  = 113  = 0.333 it lies just 
at the boundary of the source. 

We have computed for the dense source ( m j b  = 0 .40) ,  the circular orbit obtained 
for the non-rotating case (a = 0) at r /b  = 0.72, showing that in this region, even a small 
change of m l b  causes a fairly large change in rlb. 

When a # 0, the table shows that circular orbits are of decreasing or increasing 
radius according as the particle angular velocity is in the same or opposite sense to that 
of the source. Further, the tables show that there exists bounds to the value of a l b  (for a 
given m / b )  above which no equitorial circular orbit is possible. The bounds are 
however different for the case of co- and counter-rotation. 

The table lists the circular orbits under the sub-heading co-rotation and counter- 
rotation. Equation (6) shows is of the same sign as ‘a’ (i.e. there is co-rotation) if we 
use the upper sign and (2r/f’)’ / ’> a. In all other cases there will be counter-rotation 
(i.e. 4 is of the opposite sign to ‘a’) .  The condition for co-rotation thus becomes, on 
substitution for f’, 

[ ( A  -$sin sin (L)(m/b3) * 
However, from equation (10 )  (with the upper value), the limiting value of ‘a’ for a 
circular orbit in the equitorial plane is given by ( r  -+ 0, + 7r/2) 

(A -3)3/2 = 2a(m/b3)’ / ’  (14 )  
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which gives with m/b  = 0.40,0.30, a / b  = 0.056, and 0.274 respectively (values given in 
the table) where the inequality (13)is satisfied, showing that all the cases with the upper 
value correspond to co-rotation. 

Table 1. Showing the circular orbit for a ‘dense’ source. 

Sense mlb a l b  rJb 

0.40 0 

0.05 
CO-rotation 0.055 

0.056 
0.40 

0.05 
0.10 

Counter rotation 0.20 
0.25 
0.26 

0.72 

0.31 
0.05 
0 

0.90 
0.94 
0.96 
0.99 
1.0 

Table 2. Showing circular orbit for a ‘diffuse’ source. 

Sense mJb a lb  r l  b 

0.10 0.99 
0.20 0.76 

CO-rotation 
0.25 0.47 
0.274 0 

0.30 
Counter rotation No circular orbit 

within the 
boundary. 

3. Turning points in the case of a general equitorial path 

For the Hogan metric (l), the radial equation of motion for particles describing null 
geodesics may be written as (cf Carter; CL) 

r 2 i  = T J Z  

where R is given by 

E and O are identified as the energy and the 2-component of angular momentum of the 
test particle, respectively, and are explicitly given by 

E = -p ,  = -fi + (1 - f ) a  sin’ 84 

~=[( r ’+a’ )s in’  e+( i - f ) a2s in4  e ] d + ( i - f ) a  sin2 ei (17) 
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Figure 1. For a non-rotating ‘dense’ source ( a  = 0, m / b  = 0.40). 
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Figure 2. For co-rotation with different values of Figure 3. For counter-rotation in a ‘dense’ 
a / b  and m/ b. I-a/ b = 0.05 in a ‘dense’ source source ( m / b  = 0.40) with different values of a / b .  
( m l b  = 0.40). 11-a/b = 0.055 in a ‘dense’ I-for a / b  = 0.05. 11-for a / b  = 0.10. 111-for 
source ( m / b  = 0.40). 111-alb = 0.10 in a a l b  =0.20. IV-for a / b  = 0.25. 
‘diffuse’ source ( m / b  = 0.30). IV-a/b = 0.25 in 
a ‘diffuse’ source ( m / b  = 0.30). 
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where the overhead dots indicates differentiation with respect to an affine parameter 
and of course sin 8 = 1 for equitorial paths. 

The turning points are given by the zeros of R ,  which from (16) are given by 

The upper and the lower sign in the expression (18) holds for co-rotating and 
counter-rotating orbits respectively. 

Equation (18) permits us to study @ / E ,  the angular momentum per unit energy, as a 
function of the turning-point co-ordinate r, for different values of the parameters a,  b, 
and m. For the turning point to be at the centre of the central rotating object, @ / E  
shows a finite value (vanishing only for the case a = 0). This is unlike the classical case, 
where for a particle to reach the centre of symmetry, the angular momentum of the test 
particle should be zero. The difference apparently is due to the fact that @ now does not 
vanish, for 6 = 0. 

The following figures show a study of @ / E ,  for different values of r from r = 0 to 
r = b. Figure 1 is the non-rotating case (a  = 0) for a ‘dense’ source (m/b  = 0.40)’ where 
the circular orbit is obtained at r/b = 0.72. The Hogan metric reduces to the Schwarz- 
schild interior solution in this case. Figure 2 shows @ / E  for various non-zero values of a 
for both ‘dense’ and ‘diffuse’ sources ( m / b  = 0.40 and 0.30) in the case of co-rotating 
orbits. Figure 3 shows the nature of the curves for the particle with counter-rotation for 
different values of a / b  in the case of ‘dense’ source ( m / b  = 0.40). 
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